HOG SLAT BLOG – U.S.

Larger sow farms drive move to larger buildings. 0

The size of individual sow farms continues to increase; just a few years ago 2,400 head units were considered large, but new sow farms under construction this year range between 5,000 to 14,000 head in size.

Building cross-section comparison

Building cross-section comparison

Designing the central production facility into two or three larger buildings has many advantages including smaller land requirements, less underground utilities to bring to the site, shorter roadways to build and maintain, fewer walkways between buildings and less linear footage of exterior building walls.

Because of increased pig capacities and the desire to minimize the number of buildings, it was necessary to increase the buildings widths up to 190 feet.  Instead of the 4/12-pitch roof used on standard farm buildings, these jumbo-wide facilities utilize a two-piece rafter with a 1/12-pitch roof line resting on a center support wall in the middle.  Almost 6 feet high at the heel with a center height of 13 feet, the rafters are designed more like a large floor joist. The outside appearance resembles a steel frame building more than conventional wood framed structures.

Breeding/ Gestation

Galvanized gestation stalls

Galvanized gestation stalls

Totally slatted flooring is a common feature of newly constructed B&G buildings. While past layouts consisted of a solid laying area with slat sections in the rear of the pen or stall only, new construction plans incorporate slats over the entire floor with stainless feeding troughs fastened in place. This arrangement allows long-term flexibility to reconfigure the pen layout in the future if needed.

Group housing with stanchions is the predominant type of housing under construction this year. Largely through trial and error, the industry seems to have settled into pen configurations containing eight to twelve sows. This pen size permits closer grouping by size and condition and promotes easier visual inspection.

Whether the production system chooses gestation stalls, stanchions, or ESF, most equipment is specified with hot-dipped galvanized equipment instead of painted finish. The extended equipment life provided by the galvanized finish makes this an economical business decision.

One advantage reported with stanchion systems is longer equipment life resulting from moving the water away from the front of the stanchions. Locating a cup or swinging water pipe with nipples in the center of the pen reduces the deterioration of feed pipes and stall fronts by minimizing water contact with these areas.

Farrowing

Large pen farrowing crates with SowMAX feeders

Large pen farrowing crates with SowMAX feeders

Jumbo style layouts permit designing a double farrowing building with an extra wide 8-foot center alleyway to aid in animal and people movement between rooms.

Almost every new construction project increases the length and width of the farrowing crates and creep area from the standard 5′ x 7′ footprint up to 6’ wide by 8′ long, with some systems choosing 8’6″ long crates. Longer framed sows and reduced piglet crushing rates from using wider pens have driven this trend. Again, the equipment will have a galvanized finish with a combination of cast iron, TriDek, or plastic slats for flooring choices.

Most production systems will incorporate some provision for ad-lib sow feeding. Besides reducing farm labor, ad-lib sow feeding is the most efficient method for feeding individual sows to reach full milk production potential. The type of systems can range from electronic transponder metering devices to sow activated hopper type feed dispensers.

Swining rafters on new farrowing house

Swinging rafters on new farrowing house

Projects of this size require builders with an expanded skill set. A builder must be able to provide professional project management, understanding of regulatory issues, and increased insurance coverage. It is also critical for any construction firm undertaking projects of this size to have sufficient financial backing and the ability to manage large cash flows.

For more information about Hog Slat’s construction projects and swine production equipment offerings, contact your nearest sales representative by clicking here.

Good Slat Design Aid in Preventing Swine Lameness 0

Totally slatted flooring used in group sow housing.
Totally slatted concrete flooring used in group sow housing.

With the majority of U.S. pigs finished in confinement style facilities, a 12-pound weaned pig will spend at least four months on slatted concrete floors. As the industry moves from gestation stalls to group housing designs, slat quality becomes an important factor. Rather than being confined to a small slatted area, sow movement over an entire slatted pen subjects them potential injury from defective flooring design.

Good concrete slat design, construction, and maintenance can minimize foot and leg problems associated with swine production.

The most critical feature in slat design is producing slats with a flat top surface.  Slats with uneven and inconsistent surface place additional stress on pig’s feet and joints.

Level top provides surface that is easier on pig's feet and joints.

Level top provides a surface that is easier on pig’s feet and joints.

Many methods used for producing concrete slats consist of placing wet cast concrete into multiple steel forms and hand troweling to finish.  It is harder to build slats with a consistently flat surface by hand finishing methods.

 

Rotoscreen "striking off" dry cast concrete on mold to apply flat surface on slats.

Rotoscreed “striking off” dry cast concrete from mold to apply a flat surface on slats.

Machined slats are produced with a different process that eliminates the uneven surface found on hand cast slats. Automated Rotoscreeds “strike off” the mold creating a level, uniformly flat top that is easier for pigs to move across.

Machine produced slats

Hog Slat floor slats provide a flat, even surface for pigs.

Slat longevity is an important consideration as worn or damaged areas create uneven surfaces that can injure pigs. Slats built using concrete with a low water-to-cement ratio are longer lasting and more resistant to wear.

The water-cement ratio refers to the ratio of the water weight to the cement weight used in a concrete mix. A lower ratio leads to higher strength and durability but makes the mix difficult to work with and form. For this reason, most slats are produced with wet cast concrete using a water-cement ratio of 0.5. Machined slats are manufactured from dry cast concrete with a water-cement ratio of less than .39.

Cement-Water-Ratio_web

A cubic yard of wet cast concrete formulated with 500 pounds of cement contains 250 pounds of water, while a dry cast mix only contains 195 pounds. As the excess water leaves during the curing process, it creates microscopic pores that reduce the final strength of a slat. Compromised slat strength can lead to many problems down the road, including expensive repairs, equipment damage and injury to pigs and farm personnel.

Wet cast slats by feeder showing exposed aggregate damage.
Wet cast slats by feeder showing exposed aggregate damage and repaired surface with Vanberg Specialized Coatings. 

Maintaining surfaces and edges of slats, as they wear over time, is essential in providing pigs with a comfortable flooring surface. Areas around waterers and feeders are the first to show significant damage. When the need arises for concrete slat repair, choose a repair mortar designed for slat repair versus generic concrete repair products. Mortars designed for slat repairs feature cement and epoxy formulations with higher cure strengths and faster cure times. The amount of damage will determine the type of repair product needed. For simple repairs, less than 1/4″ in depth, a cost effective cement mortar can be used. More severe corrosion requires the use of epoxy mortars to hold the repair patch in place. Hog Slat offers a complete range of concrete repair products from Vanberg Specialized Coatings that can be used to repair worn and damaged slats with minimal downtime. For more information on slat repairs see the DIY video at http://www.hogslat.com/con-korite-xtra-mortar-kit.

Choosing concrete slats with a level surface and uniform openings provide growing pigs and group housed sows with secure footing to minimize foot and joint injuries.

To learn more about Hog Slat’s machine produced slats go to http://www.hogslat.com/concrete-slats.

 

Center Drop Sow Drop 0

Hog Slat’s newest feed drop hangs straight under the feed pipe to reduce twist. Available in two models; HSSD60C for mounting on Grow-Disk metal pipe or HSS55DC for model 55 PVC pipe.

itm-hssd60c-img_blog

 

The Center Drop is molded from UV stable polypropylene to prevent damage from sunlight and cold temperatures.  An open-top design permits direct installation on feed pipe and a large access plug allows access to inside of the feeder. A plastic clip for record cards completes the exterior features.

itm-hssd60c-img_shutoff_blog

 

The Center Drop features positive open/close shutoff.

itm-hssd60c-img_dial_blog

 

Large adjustment dial permits single-hand regulation feed settings from one to eight pounds.

itm-hssd60c-img_roller_blog

 

Nylon wheel reduces wear on lifter cord and the weighted ball securely seals bottom opening.

ITM-HS76001-IMG(Web)

 

 

 

To order go to http://hogslat.com/hog-slat-center-drop-sow-feeder-8-lb

Hog Slat’s Drop Tube Assembly completes the installation to a metal pipe.  Available in 2″ or 3″ models, the flared top reduces feed spillage and provides a flexible mount to sow drops.

To order go to http://hogslat.com/grower-select-adjustable-drop-tube-assembly-4 

 

Grow-Disk Feed System Maintenance & Troubleshooting 0

Grow-Disk LogoAppropriate maintenance and troubleshooting of a Grow-Disk chain feeding system will lead to smooth operation and a longer lifetime of the components.

 

Use this inspection checklist as a guide to maintaining your Grow-Disk feed system.

**Caution: Disconnect power before performing any maintenance.

 

Grow-Disk Maintenance

Daily Inspection
  • Monitor system amperage load
Monthly Inspection
  • Open unit and remove feed residue
  • Check chain tension
Every 6 Months Inspection
  • Remove dust from drive unit ventilator
  • Check functioning of safety switch
  • Check proximity switch
  • Check any/all other safety devices or sensors
Once a Year Inspection
  • Check idler wheel and drive sprocket for wear
  • Check corners. Remove residue. Verify tube position.
  • Check system wiring for damage

 

Grow-Disk Troubleshooting

If you experience an issue with a Grow-Disk Feed System, initial machinery inspection is important. Any troubleshooting exercise should begin with a thorough investigation of the machine, process, design, operation, and system maintenance records. To assist in troubleshooting the Grow-Disk feed system, use the Grow-Disk Troubleshooting Chart.

 

To learn more about Grow-Disk feed system visit http://www.hogslat.com/grower-select-grow-disk-feed-system

 

 

SowMAX ebook. 0

We just released our new SowMAX ebook.

It’s the illustrated manual on feeding sows in lactation with SowMAX. See the section on ordering hardware and brackets to add SowMAX dispensers to your farrowing crates.

Click here to download your free copy.

SowMAX-ebook-ad-web

Go to our web page to watch SowMAX videos .