HOG SLAT BLOG – U.S.

Larger sow farms drive move to larger buildings. 0

The size of individual sow farms continues to increase; just a few years ago 2,400 head units were considered large, but new sow farms under construction this year range between 5,000 to 14,000 head in size.

Building cross-section comparison

Building cross-section comparison

Designing the central production facility into two or three larger buildings has many advantages including smaller land requirements, less underground utilities to bring to the site, shorter roadways to build and maintain, fewer walkways between buildings and less linear footage of exterior building walls.

Because of increased pig capacities and the desire to minimize the number of buildings, it was necessary to increase the buildings widths up to 190 feet.  Instead of the 4/12-pitch roof used on standard farm buildings, these jumbo-wide facilities utilize a two-piece rafter with a 1/12-pitch roof line resting on a center support wall in the middle.  Almost 6 feet high at the heel with a center height of 13 feet, the rafters are designed more like a large floor joist. The outside appearance resembles a steel frame building more than conventional wood framed structures.

Breeding/ Gestation

Galvanized gestation stalls

Galvanized gestation stalls

Totally slatted flooring is a common feature of newly constructed B&G buildings. While past layouts consisted of a solid laying area with slat sections in the rear of the pen or stall only, new construction plans incorporate slats over the entire floor with stainless feeding troughs fastened in place. This arrangement allows long-term flexibility to reconfigure the pen layout in the future if needed.

Group housing with stanchions is the predominant type of housing under construction this year. Largely through trial and error, the industry seems to have settled into pen configurations containing eight to twelve sows. This pen size permits closer grouping by size and condition and promotes easier visual inspection.

Whether the production system chooses gestation stalls, stanchions, or ESF, most equipment is specified with hot-dipped galvanized equipment instead of painted finish. The extended equipment life provided by the galvanized finish makes this an economical business decision.

One advantage reported with stanchion systems is longer equipment life resulting from moving the water away from the front of the stanchions. Locating a cup or swinging water pipe with nipples in the center of the pen reduces the deterioration of feed pipes and stall fronts by minimizing water contact with these areas.

Farrowing

Large pen farrowing crates with SowMAX feeders

Large pen farrowing crates with SowMAX feeders

Jumbo style layouts permit designing a double farrowing building with an extra wide 8-foot center alleyway to aid in animal and people movement between rooms.

Almost every new construction project increases the length and width of the farrowing crates and creep area from the standard 5′ x 7′ footprint up to 6’ wide by 8′ long, with some systems choosing 8’6″ long crates. Longer framed sows and reduced piglet crushing rates from using wider pens have driven this trend. Again, the equipment will have a galvanized finish with a combination of cast iron, TriDek, or plastic slats for flooring choices.

Most production systems will incorporate some provision for ad-lib sow feeding. Besides reducing farm labor, ad-lib sow feeding is the most efficient method for feeding individual sows to reach full milk production potential. The type of systems can range from electronic transponder metering devices to sow activated hopper type feed dispensers.

Swining rafters on new farrowing house

Swinging rafters on new farrowing house

Projects of this size require builders with an expanded skill set. A builder must be able to provide professional project management, understanding of regulatory issues, and increased insurance coverage. It is also critical for any construction firm undertaking projects of this size to have sufficient financial backing and the ability to manage large cash flows.

For more information about Hog Slat’s construction projects and swine production equipment offerings, contact your nearest sales representative by clicking here.

Good Slat Design Aid in Preventing Swine Lameness 0

Totally slatted flooring used in group sow housing.
Totally slatted concrete flooring used in group sow housing.

With the majority of U.S. pigs finished in confinement style facilities, a 12-pound weaned pig will spend at least four months on slatted concrete floors. As the industry moves from gestation stalls to group housing designs, slat quality becomes an important factor. Rather than being confined to a small slatted area, sow movement over an entire slatted pen subjects them potential injury from defective flooring design.

Good concrete slat design, construction, and maintenance can minimize foot and leg problems associated with swine production.

The most critical feature in slat design is producing slats with a flat top surface.  Slats with uneven and inconsistent surface place additional stress on pig’s feet and joints.

Level top provides surface that is easier on pig's feet and joints.

Level top provides a surface that is easier on pig’s feet and joints.

Many methods used for producing concrete slats consist of placing wet cast concrete into multiple steel forms and hand troweling to finish.  It is harder to build slats with a consistently flat surface by hand finishing methods.

 

Rotoscreen "striking off" dry cast concrete on mold to apply flat surface on slats.

Rotoscreed “striking off” dry cast concrete from mold to apply a flat surface on slats.

Machined slats are produced with a different process that eliminates the uneven surface found on hand cast slats. Automated Rotoscreeds “strike off” the mold creating a level, uniformly flat top that is easier for pigs to move across.

Machine produced slats

Hog Slat floor slats provide a flat, even surface for pigs.

Slat longevity is an important consideration as worn or damaged areas create uneven surfaces that can injure pigs. Slats built using concrete with a low water-to-cement ratio are longer lasting and more resistant to wear.

The water-cement ratio refers to the ratio of the water weight to the cement weight used in a concrete mix. A lower ratio leads to higher strength and durability but makes the mix difficult to work with and form. For this reason, most slats are produced with wet cast concrete using a water-cement ratio of 0.5. Machined slats are manufactured from dry cast concrete with a water-cement ratio of less than .39.

Cement-Water-Ratio_web

A cubic yard of wet cast concrete formulated with 500 pounds of cement contains 250 pounds of water, while a dry cast mix only contains 195 pounds. As the excess water leaves during the curing process, it creates microscopic pores that reduce the final strength of a slat. Compromised slat strength can lead to many problems down the road, including expensive repairs, equipment damage and injury to pigs and farm personnel.

Wet cast slats by feeder showing exposed aggregate damage.
Wet cast slats by feeder showing exposed aggregate damage and repaired surface with Vanberg Specialized Coatings. 

Maintaining surfaces and edges of slats, as they wear over time, is essential in providing pigs with a comfortable flooring surface. Areas around waterers and feeders are the first to show significant damage. When the need arises for concrete slat repair, choose a repair mortar designed for slat repair versus generic concrete repair products. Mortars designed for slat repairs feature cement and epoxy formulations with higher cure strengths and faster cure times. The amount of damage will determine the type of repair product needed. For simple repairs, less than 1/4″ in depth, a cost effective cement mortar can be used. More severe corrosion requires the use of epoxy mortars to hold the repair patch in place. Hog Slat offers a complete range of concrete repair products from Vanberg Specialized Coatings that can be used to repair worn and damaged slats with minimal downtime. For more information on slat repairs see the DIY video at http://www.hogslat.com/con-korite-xtra-mortar-kit.

Choosing concrete slats with a level surface and uniform openings provide growing pigs and group housed sows with secure footing to minimize foot and joint injuries.

To learn more about Hog Slat’s machine produced slats go to http://www.hogslat.com/concrete-slats.

 

Hog Slat to Exhibit at the 2015 World Pork Expo 0

Hog Slat will be exhibiting at this year’s World Pork Expo with many new and further developed swine equipment products, highlighting Hog Slat’s GrowerSELECT product line.

 

At the show, Hog Slat will have a large variety of equipment on display in both the exhibition hall (Booth V165 VIB) and at the Hog Slat hospitality tent (Tent G234). Equipment that will be on display includes Hog Slat’s Grow-Flex Feed System, Grow-Disk Feed System, Slats, and an introduction to Hog Slat’s AirStorm fans. We invite you to stop by the Hog Slat booth to see what’s new at the show.

 

Enjoy FREE ADMISSION to the 2015 World Pork Expo, courtesy of Hog Slat. You may redeem your admission voucher by registering online at www.worldpork.org by May 28th and use voucher code HogSlat2015. Or, present a hard copy of our voucher (available through the Hog Biz, local Hog Slat retail stores, or your local sales contact) during on-site registration the day of the expo.  Expo registration is located in the Animal Learning Center inside Gate 15.

 

Craving some good BBQ? Stop by the Hog Slat hospitality tent anytime during expo to enjoy Vinny’s BBQ, located in Dakota City, IA. Vinny’s will be serving lunch and dinner both Wednesday and Thursday of the expo.

 

The World Pork Expo is held June 3rd-5th in Des Moines, IA at the Iowa State Fairgrounds. Visit us at the show in booth V165 in the Varied Industries Building and Hospitality Tent G234. We hope to see you at the show!

Hog Slat Wrote the Book on Sow Group Housing 0

Download Hog Slat’s new handbook discussing group sow housing. The handbook highlights Hog Slat’s field experience in constructing and converting over 300,000 sow spaces to group housing with feeding stanchions.

stanchion handbook cover

The handbook begins by comparing merits of different systems available for group housing. Complete with illustrated pictures of equipment and diagrams of building layouts, this 16 page handbook contains practical details needed to build new sow housing or convert existing stalls to group housing.

Stanchion pages

 

 

Download your FREE
              copy at
Stanchion Handbook

 

 

 

Sow Group Housing Conversion Answers Welfare Concerns 0

MB stanchions_3_edited-Large

Murphy-Brown’s North Division has completed one of the largest stall to group housing conversions in the industry. All the company farms have been converted to group housing over the last four years; 58,000 sows in total.  Keith Allen, General Manager of the North Division, discussed the conversion.

 

Keith, how did you decide on the type of group system?

“Long before we announced our conversion plans, we toured several types of housing systems abroad; ESF (Electronic Sow Feeding), Free-Access stalls and Pens with feeding stations or Stanchions.  We felt stanchions would require the least amount of cost and would be easiest to manage. The results four years post conversion support that decision.”

 

MB stanchions_4_edited-Large

 

Can you explain that a little further?

“Our production records validate improvements for any metric you can compare, pig/born, pigs weaned, etc.  The company farm production records rank better than most contract growers with stall gestation.  Sow mortally is neutral when compared to traditional stall operations in the system.  Fighting is less than we expected. Although we anticipated higher feed consumption in gestation, it also has remained neutral.”

 

Do you manage any other types of group housing systems to compare stanchions to?

“We have a large 10,500-sow unit with ESF feeding stations.  The repair and maintenance of the feeding stations requires a full time employee on this operation.  There is extra labor involved with the management of the animals.  Every day the computer system prints a list of animals that didn’t record entry into the ESF from the previous day.  An employee must locate those animals and identify why; Is she sick? Did she lose her tag? Is the feeding station in need of repair? Etc.”

“We just don’t have the extra labor costs or the maintenance in our stanchion type barns.”

“Free access stalls don’t have the same issues, but are more expensive to construct and present an increased opportunity of equipment failure with the gate latching mechanism.  There is also a chance an employee inadvertently or purposely could lock the animals in the stalls, and then we really don’t have loose pen housing anymore.”

 

How did the transition go on the farms?

“The transition was seamless; our employees now prefer stanchions to the stall system we used before.”

 

MB stanchion floorplan_edited-LARGE 

What are basic design requirements you used?

“We designed the pens to hold six sows with 24 square feet per animal; there is one feeding stanchion per sow.  The stanchions are 24” wide, and the dividers are 18” long.  The length of the divider is important; this divider should be long enough to extend past the shoulders. By extending past her shoulder, she feels more comfortable and secure when eating.”

“The facility design provides breeding stalls to house sows for 35 to 42 days post insemination.  After preg-checking, sows are grouped by size and moved to the pens.”

“An additional 3-5% of stalls have been added in the Group Housed gestation barns to provide critical care space for any animals that may require extra care or must be removed from the pens.”

 

MB stanchions_1_edited-Large

Have you made changes to the design over time since beginning the conversion?

“Yes, our original layouts allowed for 7% extra stalls in the group housed gestation barns…..we have since cut that back to only 3-5%.”

“We have also realized it is unnecessary to have an alleyway between rows in group housed gestation. We simply mount the stanchions and sow feed drops head to head. One of the things you lose with group housing is the ability to regulate individual feed intake…..you manage by pens, so there isn’t a lot of adjustment to the drops.”

“We also have added “Access Doors” to the pen dividers to make it easier to walk from pen to pen.  These consist of two posts set far enough apart that a person can squeeze through with a swinging solid divider on top to prevent the animals from attempting to go over the opening.  We no longer have to climb pen dividers to check sows.”

 

How have the changes been viewed by Smithfield’s customers?

“I have personally toured many representatives from large food companies through our remodeled facilities.  These companies made public commitments to securing pork from “stall-free” producers by a named date….they are listening to the consumer and committed to their long term Sustainability Programs.  In every case, the reps remarked how well cared for the animals seemed to be and remarked how clean the facilities were.   We think we have answered their concerns with this type of group housing.”